© MyMathsCloud

Area and Perimeter Of 2D Shapes Questions By Topic:

Table of Contents

1	Bronz	ze	2
	1.1	Counting Areas	2
	1.2	Simple Shapes	3
	1.3	Compound Shapes	4
	1.4	Working Backwards	18
	1.5	Fitting	19
2	Silver		22
	2.1	Simple Shapes	22
	2.2	Compound Shapes	22
	2.3	Area Fitting	28
3	Gold		30
	3.1	Compound Shapes	30
4	Diam	ond	38
	4.1	Compound Shapes	38
5	Challe	enges	42

Page 1 of 53

© MyMathsCloud

1 Bronze

1.1 Counting Areas

© MyMathsCloud

1.3 Compound Shapes

3 cm		
Perimeter		
Way 1: Make into a complete rectangle	Way 2: Break each individual side down	

© MyMathsCloud

Page 9 of 53

10	cm	1 cm	
	3 cm		
	1 cm		
			6 cm
	2 cm		
	Perime	ter	
Way 1: Make into a complete rectangle		Wa	y 2: Break each individual side down

© MyMathsCloud

9 cm

© MyMathsCloud

15 cm 11 cm

© MyMathsCloud

1.4 Working Backwards

© MyMathsCloud

1.5 Fitting

21)

Table area = $55(60) = 300 \ cm^2$	
Sticker area = $15(5) = 75 \ cm^2$	
$\frac{300}{75} = 4$ stickers	

© MyMathsCloud

© MyMathsCloud

	Perimeter of 40 triangles = $40(30) = 1200 mm$	
iii.		
	1200 mm	
	We need to change this into m	
	1200	
	$\frac{1000}{1000} = 1.2 m$	

26) 1 m by 4 m rolls of turf cost £80.00. Mr Taylor's yard is 5 m long and 8 m wide. How much will it cost him to turf half of his yard?

Yard area = $5(8) = 40 \ cm^2$
Turf area = $1(4) = 4 cm^2$
We want to turf half the yard which is $20\ cm^2$
$\frac{20}{4} = 5$ rolls
$5(80) = f_{4}00$

27)

© MyMathsCloud

2 Silver

2.1 Simple Shapes

29) Find the area and perimeter of the shapes below

2.2 Compound Shapes

© MyMathsCloud

34)

© MyMathsCloud

37) $5(2)=200 \frac{5}{5} \frac{5}{5$

 $^{32 \text{ cm}}$ Area of rectangle= 32(17) = 544Area of circle = $\pi r^2 = \pi (8)^2 = 201.1$ Area of light pink shaded region = $544 - 201.1 = 298.9 \text{ cm}^2$

Page 25 of 53

40)

© MyMathsCloud

Area of square =
$$12(12) = 144$$

Area of circle= $\pi r^2 = \pi (6)^2 = 36\pi$
Area of pink shaded region= $\frac{144-36\pi}{4} = 36 - 9\pi \ cm^2$

2.3 Area Fitting

	Area of floor = $3(2) = 6 m^2$
Acorn tiles: 50 cm x 50 cm cost £4 each	
	$50(50) = 2500cm^2$
	100 m - 1 m
	100 cm = 1 m $10000 cm^2 - 1 m^2$
	10000cm = 1m
	(m^2) (0000 m ²)
	$6 m^2 = 60000 cm^2$
	60000
	$\frac{80000}{2500} = 24$
	2500
	24(64) 606
	$24(\pm 4) = \pm 96$
Beeching tiles: 60 cm x 40 cm. Cost £3 each	
	$60(40) = 2400 cm^2$

© MyMathsCloud

$\frac{60000}{2400} = 25$	
25(£3) = £75	
Carpet: £14 per square metre. Fitting cost £30	
$6(14) + 30 = \pounds 114$	
Reeching Tiles is the cheanest	

23 m
9 m 2 m Flower Bed 3 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2
i.
Area of lawn (including patio)= $21(7) = 147 m^2$
Area of patio $8(3)=24m^2$
Area of lawn $147 - 24 = 123 m^2$
ii. Total cost $4(6) = 24$ 10% of 24 = 2.40 5% of 24 = 1.20 15% of 24 = 2.40 + 1.20 = £3.60
$24 - 3.60 = \pounds 20.40$
iii. patio is 8 m by 3m = 800 cm by 300 cm $800 \div 50 = 16$ $300 \div 20 = 15$
Total number of tiles $15(16) = 240$
iv. 60 ÷ 4 = 15 sacks
You pay for 12 sacks, and get 3 free
12 x 10 = £120

© MyMathsCloud

3 Gold

3.1 Compound Shapes

47) Find the area of the following shapes.

50)

53)

© MyMathsCloud

4 Diamond

4.1 Compound Shapes

© MyMathsCloud

© MyMathsCloud

59)

© MyMathsCloud

61)

62)

This can be done without algebra

In order to stretch the pink triangle to become the above triangle half the size of the square, we stretch the base by 3 times and the height by 4 times (triangle opposite pink has 3 times the height due to similar triangles)

Thus,

pink area is
$$\frac{1}{12}$$
 of the triangle

Yellow area is
$$\frac{11}{12}$$
 of the triangle

$$\frac{11}{12} \times 6 = 5.5$$

Alternative method: With algebra

The pink triangle is similar to the bigger blue triangle hence the lengths will be in ratio and the area scale factor can be calculated etc

5 Challenges

63)

64)

65)

The combined green and pink areas = 11(11) + 7(7) = 170

The combined pink and purple areas = 9(9) + 5(5) = 106

Since the pink area is included in both, the difference between the total will be the difference between green and purple

170 - 106 = 64

20

Areah

= 100

20

rea

20

Triangle BCD and triangle ACE are similar, hence all sides are multiplied by a scale factor

20

Scale factor $=\frac{20}{10}=2$

This means ratio 2:1

Height = 2(10) = 20

Area of triangle ACE $=\frac{1}{2}(20)(20) = 200$

200 - 100 = 100

© MyMathsCloud

	$s + s + s = 2\sqrt{2}$	
	$3s = 2\sqrt{2}$	
	$s = \frac{2\sqrt{2}}{3}$	
Area of Q = $s^2 = \left(\frac{2\sqrt{2}}{3}\right)^2 = \frac{8}{9}$		
Area of $P = 1(1) = 1$		
	$1:\frac{8}{9}$	
	9:8	

© MyMathsCloud

78)

© MyMathsCloud

www.mymathscloud.com © MyMathsCloud

$2z^2 = x^2$
$z^2 = \frac{x^2}{2}$
$z = \frac{x}{\sqrt{2}}$
Length of square = $2x + z + z = 2x + \frac{x}{\sqrt{2}} + \frac{x}{\sqrt{2}} = 2x + \frac{2x}{\sqrt{2}} = 2x + \sqrt{2}x = x(2 + \sqrt{2})$
Length of outer square = $2x + y + y = 2x + \sqrt{2}x + \sqrt{2}x = 2x + 2\sqrt{2}x = x(2 + 2\sqrt{2})$
$\sqrt{2}(2+\sqrt{2}) = 2+2\sqrt{2}$
The squares have sides in the ratio $1:\sqrt{2}$
Therefore the squares have areas in the ratio $1:2$